Example 1:
Beam with Uniformly Distributed Load (UDL)
Problem Statement
A continuous beam AB−BC has equal spans L=6 m each. Span AB is subjected to a uniformly distributed load w=10w=10 kN/m.
📌 Objective: Find the end moments MAB,MBA,MBC,MCB.
Step 1: Identify the Beam and Boundary Conditions
Fixed at A and C: θA=0, θC=0.
B is continuous: MBA=MBC (Moment equilibrium at B).
Step 2: Calculate Fixed-End Moments (FEMs)
For a UDL on a fixed-fixed beam, the fixed-end moments are:
FAB=−12wL2,FBA=12wL2
FBC=0,FCB=0
Substituting values:
FAB=−12(10)(62)=−30 kNm,FBA=+30 kNm
FBC=0,FCB=0
Step 3: Write Slope Deflection Equations
Using the slope deflection formula:
MAB=L2EI(2θA+θB)+FAB
MBA=L2EI(θA+2θB)+FBA
MBC=L2EI(2θB+θC)+FBC
MCB=L2EI(θB+2θC)+FCB
Substituting L=6, E=EI:
MAB=62EI(2(0)+θB)−30
MBA=62EI(0+2θB)+30
MBC=62EI(2θB+0)+0
MCB=62EI(θB+0)+0
Simplifying:
MAB=3EIθB−30
MBA=32EIθB+30
MBC=32EIθB
MCB=3EIθB
Step 4: Apply Boundary Conditions
Since B is continuous, moment equilibrium at B:
MBA+MBC=0
Substituting values:
32EIθB+30+32EIθB=0
34EIθB=−30
θB=−4EI30×3=−4EI90=−2EI45
Step 5: Calculate Final Moments
Substituting θB=−2EI45:
MAB=3EI×(−2EI45)−30=−645−30=−7.5−30=−37.5 kNm
MBA=32EI×(−2EI45)+30=−690+30=−15+30=15 kNm
MBC=32EI×(−2EI45)=−15 kNm
MCB=3EI×(−2EI45)=−7.5 kNm
✅ Final Moments:
MAB=−37.5 kNm
MBA=+15 kNm
MBC=−15 kNm
MCB=−7.5 kNm