Example 1

Lesson 1/2 | Study Time: 30 Min

Example 1:

Beam with Uniformly Distributed Load (UDL)


Problem Statement

A continuous beam ABBCAB - BC has equal spans L=6L = 6 m each. Span AB is subjected to a uniformly distributed load w=10 kN/m.



  • Span BC has no external loadSupports A and C are fixed, while B is continuous.


📌 Objective: Find the end moments MAB,MBA,MBC,MCBM_{AB}, M_{BA}, M_{BC}, M_{CB}.


Step 1: Identify the Beam and Boundary Conditions



  • Fixed at A and C: θA=0\theta_A = 0, θC=0\theta_C = 0.




  • B is continuous: MBA=MBCM_{BA} = M_{BC} (Moment equilibrium at B).




Step 2: Calculate Fixed-End Moments (FEMs)

For a UDL on a fixed-fixed beam, the fixed-end moments are:












FAB=wL212,FBA=wL212F_{AB} = -\frac{wL^2}{12}, \quad F_{BA} = \frac{wL^2}{12}
FBC=0,FCB=0F_{BC} = 0, \quad F_{CB} = 0

Substituting values:


FAB=(10)(62)12=30 kNm,FBA=+30 kNmF_{AB} = -\frac{(10)(6^2)}{12} = -30 \text{ kNm}, \quad F_{BA} = +30 \text{ kNm}
FBC=0,FCB=0F_{BC} = 0, \quad F_{CB} = 0


Step 3: Write Slope Deflection Equations

Using the slope deflection formula:




MAB=2EIL(2θA+θB)+FABM_{AB} = \frac{2EI}{L} (2\theta_A + \theta_B) + F_{AB}
MBA=2EIL(θA+2θB)+FBAM_{BA} = \frac{2EI}{L} (\theta_A + 2\theta_B) + F_{BA}
MBC=2EIL(2θB+θC)+FBCM_{BC} = \frac{2EI}{L} (2\theta_B + \theta_C) + F_{BC}
MCB=2EIL(θB+2θC)+FCBM_{CB} = \frac{2EI}{L} (\theta_B + 2\theta_C) + F_{CB}

Substituting L=6L = 6, E=EIE = EI:


MAB=2EI6(2(0)+θB)30M_{AB} = \frac{2EI}{6} (2(0) + \theta_B) - 30
MBA=2EI6(0+2θB)+30M_{BA} = \frac{2EI}{6} (0 + 2\theta_B) + 30
MBC=2EI6(2θB+0)+0M_{BC} = \frac{2EI}{6} (2\theta_B + 0) + 0
MCB=2EI6(θB+0)+0M_{CB} = \frac{2EI}{6} (\theta_B + 0) + 0

Simplifying:


MAB=EI3θB30M_{AB} = \frac{EI}{3} \theta_B - 30
MBA=2EI3θB+30M_{BA} = \frac{2EI}{3} \theta_B + 30
MBC=2EI3θBM_{BC} = \frac{2EI}{3} \theta_B
MCB=EI3θBM_{CB} = \frac{EI}{3} \theta_B


Step 4: Apply Boundary Conditions

Since B is continuous, moment equilibrium at B:




MBA+MBC=0M_{BA} + M_{BC} = 0

Substituting values:


2EI3θB+30+2EI3θB=0\frac{2EI}{3} \theta_B + 30 + \frac{2EI}{3} \theta_B = 0
4EI3θB=30\frac{4EI}{3} \theta_B = -30
θB=30×34EI=904EI=452EI\theta_B = -\frac{30 \times 3}{4EI} = -\frac{90}{4EI} = -\frac{45}{2EI}


Step 5: Calculate Final Moments

Substituting θB=452EI\theta_B = -\frac{45}{2EI}:




MAB=EI3×(452EI)30=45630=7.530=37.5 kNmM_{AB} = \frac{EI}{3} \times \left(-\frac{45}{2EI}\right) - 30 = -\frac{45}{6} - 30 = -7.5 - 30 = -37.5 \text{ kNm}
MBA=2EI3×(452EI)+30=906+30=15+30=15 kNmM_{BA} = \frac{2EI}{3} \times \left(-\frac{45}{2EI}\right) + 30 = -\frac{90}{6} + 30 = -15 + 30 = 15 \text{ kNm}
MBC=2EI3×(452EI)=15 kNmM_{BC} = \frac{2EI}{3} \times \left(-\frac{45}{2EI}\right) = -15 \text{ kNm}
MCB=EI3×(452EI)=7.5 kNmM_{CB} = \frac{EI}{3} \times \left(-\frac{45}{2EI}\right) = -7.5 \text{ kNm}


Final Moments:




  • MAB=37.5M_{AB} = -37.5 kNm




  • MBA=+15M_{BA} = +15 kNm




  • MBC=15M_{BC} = -15 kNm




  • MCB=7.5M_{CB} = -7.5 kNm

FARIZAN BINTI ZAKARIA

FARIZAN BINTI ZAKARIA

Product Designer
New User
Junior Vendor
Profile